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DYNAMIC STABILITY CHARACTERISTICS OF THE COMBINATION
SPACE SHUTTLE ORBITER AND FERRY VEHICLE

Delma C. Freeman, Jr., and Richmond P. Boyden
Langley Research Center

SUMMARY

Subsonic forced-oscillation tests of a 0.015-scale model of the combination
space shuttle orbiter and ferry vehicle were conducted in the Langley high-speed
7- by 10-foot tunnel. These tests were made at Mach numbers of 0.2, 0.4, and
0.5 to measure the pitch, yaw, and roll damping, the normal force due to pitch
rate, and the cross derivatives, namely, yawing moment due to roll rate and roll-
ing moment due to yaw rate. The results of this investigation showed that the
model exhibited large positive damping in pitch, yaw, and roll throughout the
test ranges of angle of attack and Mach number for all configuration variables
tested.

INTRODUCTION

In support of the space shuttle development effort, the Langley Research
Center has sponsored a program to measure experimentally the dynamic stability
characteristics of space shuttle vehicles. The aerodynamic damping derivatives
have been determined for the orbiter at speeds ranging from subsonic to hyper-
sonie (refs. 1 to 3), and for the launch vehicle from lift-off to staging of the
solid rocket boosters (refs. 4 and 5). As a continuation of this work, forced-
oscillation dynamic-stability tests of a 0.015-scale model of the combination
space shuttle orbiter and ferry vehicle ‘(hereinafter referred to as the space
shuttle orbiter/TU7 ferry vehicle) were made in the Langley high-speed 7- by
10-foot tunnel.

The space shuttle orbiter/747 ferry vehicle has been developed as a part of
the shuttle program to provide a transport for the shuttle orbiter vehicle. The
carrier aircraft was developed from a commercial Boeing TU7 airplane and was mod-
ified by the addition of both tip fins to the horizontal tail to augment the
directional stability and fore and aft support struts for the orbiter. In addi-
tion to the ferry mission, the carrier aircraft will also be used in the orbiter
approach and landing tests (ALT configuration) to carry the orbiter to an alti-
tude of approximately 7000 m, at which point the orbiter will be separated
for a gliding flight to touchdown.

In the present investigation, tests were made at Mach numbers of 0.2, 0.4,
and 0.5 to measure the pitch, yaw, and roll damping, the normal force due to
pitch rate, and the cross derivatives, namely, for yawing moment due to roll
rate and for rolling moment due to yaw rate. Tests were made of the basic T4T
airplane, of the modified TU7 (tip fins and struts added), of the ferry configu-
ration (747 plus orbiter at an incidence angle of 3°), and of the approach and




landing test configuration (747 plus orbiter at an incidence angle of 6°). The
addition of a tail-cone fairing to the orbiter base for ferrying and the deploy-
ment of the TUT wing spoilers for orbiter separation in the approach and landing
tests were also investigated.

SYMBOLS

All aerodynamic parameters presented are referred to the body axes system
except for the static longitudinal data which are referred to the stability axes
system. (See fig. 1.) The origin of the axes corresponded to the center-of-
gravity position shown in figure 2 (xcg = 51.13 em or 0.255C). The dimensional
parameters of the basic TU7 were used as reference for the aerodynamic
coefficients.
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CnB cos g + k2Cnﬁ oscillatory directional-stability parameter, per radian

CnB sin g - kZCnb yawing moment due to roll-displacement parameter, per radian

Cy side-force coefficient, Side force
AgS

c . dCy .

Y = __1, per radian or per degree

B 3B

c reference chord for T47, meters

Fp drag force, newtons

Fi, lift force, newtons

f frequency of oscillation, hertz

i incidence angle, degrees

k reduced-frequency parameter, wc/2V in pitch and wb/2V in roll and

yaw, radians

M free-stream Mach number




My pitching moment, newton-meters

Mgz yawing moment, newton-meters

p angular velocity of model about X-axis, radians per second
q angular velocity of model about Y-axis, radians per second
Qoo free-stream dynamic pressure, pascals

R Reynolds number, based on € of T47

r angular velocity of model about Z-axis, radians per second
S reference area, meters?

N free-stream velocity, meters per second

X,Y,Z body system of axes

X5,Y5,Zg stability system of axes

Xog center of gravity along X-axis

Zog center of gravity along Z-axis

a angle of attack, degrees or radians

B angle of sideslip, radians

GS spoiler deflection, degrees (numbers used as subscripts depict spoiler
segments)

w angular velocity, 2nf, radians per second

Subscript:

o orbiter

A dot over a quantity indicates a first derivative with respect to time.

APPARATUS AND MODEL

A three-view drawing of the 0.015-scale model used in the investigation is
presented in figure 2(a). The model consisted of the space shuttle orbiter
mounted "piggyback" on the 7U7 carrier vehicle. The model was constructed to
enable tests of the basic 747, the modified 747 (tip fins and struts added), the
ferry mode (orbiter incidence angle of 3°), and the approach and landing test
mode (orbiter incidence angle of 6°). Other configuration changes such as the




fairing of the tail cone on the orbiter base (fig. 2(b)), the installation of
the rocket nozzle (fig. 2(c)), the fairing of support struts (fig. 2(d)), and
deployment of the TAT7 wing spoilers to represent approach and landing test orbi-
ter separation conditions (fig. 2(e)) were also duplicated. A drawing of the
747 tip fins is presented in figure 2(f).

In order to accommodate the support sting, the base of the T47 was modified
as shown in figures 2(g) and 3. The modifications consisted of a fuselage cross
section that is constant from a point just aft of the wing-body juncture to the
end of the model. The span and geometry of the horizontal tail were maintained
by removing area from the root. Although this modification would be expected to
alter the aerodynamic and damping characteristics of the basic 747, it should
not materially affect the incremental effect of the orbiter on the overall
dynamic characteristics of the model; therefore, the addition of the measured
increments to the damping extracted from flight tests of the basic T47 should
give the correct damping values for the ferry and ALT vehicles.

The forced-oscillation tests were made in the Langley high-speed 7- by
10-foot tunnel. The operating characteristics of the tunnel are presented in
reference 6. Photographs of the model are presented in figure 3. A description
of the apparatus and data-reduction techniques is presented in reference 2.

TESTS

The forced-oscillation dynamic-stability tests were made to determine the
pitch Cmq + Cm&’ yaw Cnp - Cné cos o, and roll damping C, + C,s sin a; the

P 8
normal force due to pitch rate CNq + CN&; and the cross derivatives, namely, yaw-
ing moment due to roll rate Cnp + Cné sin a and the rolling moment due to yaw

rate Clr - Clé cos o. The values of the nominal amplitude of the oscillation

and of the range of the reduced-frequency parameter k during the tests were:

Axis Amplitude, deg k, rad

Pitch 1 0.0058 to 0.0190
Yaw 1 0.0064 to 0.0159
Roll 2.5 0.0109 to 0.0195

Static force tests were made to determine the static longitudinal and lat-
eral stability characteristics of the model to aid in the interpretation of the
dynamic tests results. Both the static and dynamic force tests were made over
an angle-of-attack range of approximately -UO to 129. The static lateral stabil-
ity characteristics were determined from incremental differences in C,, Cl,
and Cy measured over the angle-of-attack range at fixed angles of sideslip of
0° and 2.5°. The test conditions were as follows:




Mach number, Dynamic pressure, Reynolds number,
M 9., Pa R
0.2 2 758 0.56 x 106
L4 10 165 1.06
.5 14 948 1.27

For all tests, transition in the form of sparsely distributed No.

80 carbo-

rundum grains was applied in bands 0.16 cm wide located 1.5 cm streamwise from

the leading edges of all 1ifting surfaces of both the TUT7 and orbiter.

Similar

bands were applied in rings 3.05 cm aft of the nose of the orbiter and the TA47.

The static force data have been corrected for sting bending and all drag

data are total drag in that the base drag has not been subtracted out.

PRESENTATION OF RESULTS

The contents of the figures presented in this paper are as follows:

Effect of tip fins and struts on static longitudinal
characteristics . e e e e e e e e e e e e e e e

Effect of orbiter and orblter 1ncidence on static longitudinal
characteristies . . . e e e e e e e e e e e e e e e e e

Effect of tip fins and struts on static lateral characteristics .

Effect of orbiter and orbiter incidence on static lateral
characteristics . . . e e e e e e e e e e e e e e e e e

Effect of tip fins and struts on damping-in-pitch parameter and on
oscillatory stability-in-pitch parameter .

Effect of orbiter and orbiter incidence on damplng in- pltch
parameter and on oscillatory stability-in-pitch parameter .

Effect of strut fairings on damping-in-pitch parameter and on
oscillatory stability-in-pitch parameter

Effect of spoiler deployment on damping-in-pitch parameter and on
oscillatory stability-in-pitch parameter .

Effect of tail cone on damping-in-pitch parameter and on
oscillatory stability-in-pitch parameter . . . o o e .

Effect of tip fins and struts on normal force due to pltch -rate
parameter and normal force due to pitch-displacement parameter

Effect of orbiter and orbiter incidence on normal force due to
pitch-rate parameter and normal force due to pitch-displacement
parameter . . . . e e e .

Effect of strut falrlngs on normal force due to pltch rate parameter
and normal force due to pitch-displacement parameter

Effect of spoiler deployment on normal force due to pitch- rate
parameter and normal force due to pitch-displacement parameter

Effect of tail cone on normal force due to pitch-rate parameter and
normal force due to pitch-displacement parameter . . . e e .

Effect of tip fins and struts on damping-in-yaw parameter and on

oscillatory directional-stability parameter . . . . . « . . . . < . .

Figure
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Figure
Effect of orbiter and orbiter incidence on damping-in-yaw parameter

and on oscillatory directional-stability parameter . . 19
Effect of spoiler deployment on damping-in-yaw parameter and

oscillatory directional-stability parameter . . . e 20
Effect of tail cone on damping-in-yaw parameter and on osc1llatory

directional-stability parameter . . . . e v e e 21
Effect of tip fins and struts on rolling moment due to yaw- rate

parameter and on effective dihedral parameter . . . e e 22
Effect of orbiter and orbiter incidence on rolling moment due to ,

yaw-rate parameter and on effective dihedral parameter . . . . . . . . 23
Effect of spoiler deployment on rolling moment due to yaw-rate

parameter-and on effective dihedral parameter . . . e e e 24
Effect of tail cone on rolling moment due to yaw-rate parameter

and on effective dihedral parameter . . . e e 25
Effect of tip fins and struts on damplng-ln-roll parameter and on

rolling moment due to roll-displacement parameter . . . . . . . . . . 26
Effect of orbiter and orbiter incidence on damping-in-roll

parameter and on rolling moment due to roll-displacement

parameter . . . e e e 27
Effect of spoiler deployment on damplng -in- roll parameter and on

rolling moment due to roll-displacement parameter . . . e e e e 28
Effect of tail cone on damping-in-roll parameter and on rolllng

moment due to roll-displacement parameter . . . e e e e 29

Effect of tip fins and struts on yawing moment due to roll rate

parameter and on yawing moment due to roll- dlsplacement

parameter . . . . . . .« e e 30
Effect of orbiter and orblter 1n01dence on yaw1ng moment due to

roll-rate parameter and on yawing moment due to roll- dlsplacement

parameter . . . . c e e e 31
Effect of spoiler deployment on yaw1ng moment due to roll rate

parameter and on yawing moment due to roll- dlsplacement

parameter . . . . . e e e e . 32
Effect of tail cone on yaw1ng moment due to roll rate parameter
and on yawing moment due to roll-displacement parameter . . . . . . . 33

RESULTS AND DISCUSSION
Static Longitudinal Stability

The static-longitudinal-stability data for the model are presented in fig-
ures 4 and 5. These static data, which were obtained by utilizing the same
model that was used for the dynamic tests, are presented to verify and aid inter-
pretation of the dynamic test results. The results of tests to determine the
effects of the addition of the orbiter support struts and the tip fins to.the
basic 747 are presented in figure 4. Addition of the struts and tip fins
increased the static longitudinal stability; this indicated that the increased
horizontal tail effectiveness due to the end-plating effects of the tip fins
more than overpowered any strut drag effects on the model stability. Presented
in figure 5 are results of tests made to determine the effect of the orbiter and
orbiter incidence on the static longitudinal characteristics of the modified T47
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(struts and tip fins added). Although the combination orbiter and T47 was less
stable than the 747 alone at low angles of attack, the instability of the T47
alone above an angle of attack of 80 was eliminated by the addition of the orbi-
ter. Increasing the orbiter incidence angle to 6° provided a positive trim

increment at all angles of attack and increased the trim angle of attack from
3.59 to 89.

Static Lateral Stability

The static-lateral-stability data are presented in figures 6 and 7. The
results of figure 6 show the effect of tip fins and struts on the static lateral
characteristics of the basic T47 and indicated that, as expected, the addition
of the tip fins resulted in an increase in CnB at low angles of attack because

of the increased side area of the tip fins. Thé fins had very little effect on
ClB. Results presented in figure 7 show the effect of the orbiter and orbiter

incidence on the static lateral characteristics of the modified T47. Adding the
orbiter shielded the TU4T7 vertical tail and resulted in a large decrease in CnB

at angles of attack below 4°. As the angle of attack increased to 5° or 6©, the
747 vertical tail emerged from the wake of the orbiter and directional stability
was essentially restored to the level of the 747 without the orbiter. This

change in the level of CnB is generally above the cruise angle-of-attack range

(for example, at M = 0.5 for the ferry configuration (i, = 3°) the cruise
angle of attack is 4.59). Results of figure 7 also indicate that the orbiter
installation increased the level of the effective dihedral (_CIB)'

Pitching Oscillation Test Results

The oscillatory-longitudinal-stability parameters measured in the pitching
oscillation tests at Mach numbers of 0.2, 0.4, and 0.5 are presented in fig-
ures 8 to 17. The in-phase with displacement parameter Cma - kZCmd and the
out-of-phase with displacement parameter Cmq + Cmd are presented in figures 8
to 12. A comparison of the in-phase Cma - kZCmd with Cma computed from the
static tests results is presented in figure 9. This comparison made for the
ferry configuration (io = 39) shows reasonable agreement between the static and

forced-oscillation test results.

In general, the model exhibited large positive pitch damping (negative val-
ues of Cmq + Cmd)' The data of figure 8 show the effects of adding the tip

fins and struts to the basic TU47 configuration. These results show significant
increases in the damping of the 747 due to these additions. The increased damp-
ing results from increased horizontal tail effectiveness due to the end-plating




effect of the tip fins. The addition of the orbiter to the modified 747 gener-
ally increased the pitch damping. (See fig. 9.)

The effect of strut fairings (fig. 2(d)) and spoiler deployment (fig. 2(e))
is presented in figures 10 and 11, respectively. These configuration changes
had no significant overall effect on the level of the pitch damping.

The results of figure 12 show the effect of the orbiter tail-cone fairing
(fig. 2(b)) on the piteh damping. Even though the tail cone increased the orbi-
ter length by approximately 25 percent, it had essentially no effect on the
pitch damping of the ferry configuration because of the very large damping of
the TUT.

The normal force due to pitching velocity CNq + CN& and the in-phase with
displacement parameter CNa - kZCNd are presented in fiéures 13 to 17. These
results show CNa - k2CNd is positive and decreases with angle of attack. Con-
siderable scatter is seen in CNq + CN& because the measurement of the secon-

dary parameters is more difficult, as pointed out in reference 2. The compari-
son of the in-phase parameter CNa -k CNd with CNa determined from the

static data presented in figure 14 shows good agreement.

Yawing Oscillation Tests

The oscillatory-stability parameters measured in the yawing oscillation
tests are presented in figures 18 to 25. The in-phase with displacement
parameter CnB cos o + kZCn; and out-of-phase with displacement parameter

Cn, - Cné cos @ results are included in figures 18 to 21. The model had large

r

positive damping in yaw (negative values of Cnr - Cné cos a) throughout the

test ranges of angle of attack and Mach number. Data showing the results of add-
ing the tip fins and struts to the basic 747 are presented in figure 18. These
results show a significant increase in the yaw damping due to the increased side
area of the tip fins aft of the center of rotation. The effect of the orbiter
and orbiter incidence on the yaw damping Cnr - Cp: cos g of the modified THT

<

and data showing a comparison of the in-phase parameter CnB cos o + k2Cné and
CnB cos 00 computed from the static test are presented in figure 19. There
appears to be good agreement between the static and dynamic test results. The
addition of the orbiter to the modified T47 had no adverse effects on the vehi-

cle damping although the orbiter installation slightly increased the damping of
both the ferry and ALT vehicle. The large decrease in CnB due to the blanket-
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ing of the 7U7 vertical tail by the orbiter seen in the static data (fig. 7)
also is seen in the in-phase parameter. Deploying the spoilers (fig. 20) and
adding the tail cone (fig. 21) had no adverse effects on the combined vehicle
damping.

The rolling moment due to yawing velocity Clr - Clé cos ¢ 1s presented in

figures 22 to 26. A comparison of the in-phase parameter CIB cos o + k2clf

with CIB cos o, computed from the static data (fig. 23) shows the static data

to have the same trends with angle of attack and approximately the same level as
the in-phase parameter. The measured value of Clr - Clé cos o 1is positive at

zero angle of attack and increases with angle of attack. Configuration changes
have little effect on the parameter.

Roiling Oscillation Tests

The oscillatory-stability parameters measured in the rolling oscillation
tests are presented in figures 26 to 33. The in-phase with displacement
parameter CIB sina - kzclé and out-of-phase with displacement parameter

C1p + Clé sin @ are presented in figures 26 to 29. Data showing the effect of

orbiter and orbiter incidence on the roll damping of the basic T47 along with a
comparison of ClB sin a - k2Cl§ with C18 sin @ computed from the static

tests (fig. 27) indicate good agreement between the static and dynamic test
results. The model exhibited large positive roll damping (negative values of
C1p + Clé sin a) throughout the test ranges of angle of attack and Mach number.

Except for the spoiler deployment at high angles of attack (fig. 28), the roll
damping of the ferry and ALT configuration was insensitive to the configuration
changes tested. The results of figure 28 show that, at the higher test angles
of attack, the deployment of the spoiler did increase the roll damping. This
increased damping is probably caused by the formation of regions of separated
flow on the wing which lags the model motion and therefore increases the damping
contribution of the wing.

The yawing moment due to rolling velocity Cnp + Cné sin @ data measured
in the roll tests are presented in figures 30 to 33. The results of figure 31,
which presents the effect of the orbiter and orbiter incidence on the yawing
moment due to rolling velocity, show that the addition of the orbiter to the mod-
ified 74T resulted in a negative increment in Cnp + Cné sin a. Also presented

in figure 31 is a comparison of CnB sina - kZCné with CnB sin a computed

from the static data. These comparisons show good agreement between the static
and dynamic test results.
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SUMMARY OF RESULTS

An investigation has been conducted to determine the subsonic dynamic sta-
bility characteristics of a 0.015~scale model of the combination space shuttle
orbiter and ferry vehicle. The results of this investigation may be summarized
as follows:

1. The model exhibited large positive damping in pitch, yaw, and roll
throughout the test ranges of angle of attack and Mach number for all configura-
tion variations.

2. There was generally good agreement of the in-phase dynamic parameters
with the corresponding static data.

3. Addition of the orbiter to the modified 747 had no adverse effects on
the damping over the test ranges of angle of attack and Mach number.

4, Addition of the orbiter to the modified 747 shielded the TU4T7 vertical
tail and significantly reduced the directional stability of the ferry and ALT
configuration at angles of attack below U0,

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

February 28, 1977
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Azimuth reference

Figure 1.- System of axes used in investigation. Arrows indicate positive
direction of moments, forces, and angles.
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Figure 2.- Continued.
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(e) Details of T47 spoiler deployment during orbiter separation.

Figure 2.- Continued.

Model center line
I

19



20

Horizontal tail .19

— L

142

L73
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(g) Comparison of wind-tunnel model with basiec TH7.

Figure 2.- Concluded.
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(b) Rear view.

Figure 3.- Concluded.
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Figure 8.- Effect of tip fins and struts on damping-in-pitch parameter and
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Figure 10.- Effect of strut fairings on damping-in-pitch parameter and
on oscillatory stability-in-pitch parameter of ferry configuration.
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and on oscillatory stability-in-pitch parameter of ALT configuration.
ig = 60; faired struts; tail cone on.
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Figure 12.- Effect of tail cone on damping-in-pitch parameter -and on oscillatory
stability-in-pitch parameter of ALT configuration. 1, = 6°; faired struts.
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parameter and normal force due to pitch-displacement parameter of basic
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Figure 14.- Effect of orbiter and orbiter incidence on normal force due to
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Figure 17.- Effect of tail cone on normal force due to pitch-rate parameter
and normal force due to pitch-displacement parameter of ALT configuration.
ip = 69; faired struts.

63



C .
Ng * Chgs
per radian

W
CNG kCNd.
per radian

64

80

60 £
20 E
A}éi
S o
— E)
o E i ) D ¢
E 0)]
2 ; Tail Cone
— 0] On
= o of
5.0F - O B——= 3
0 ":Tllllll}l lllllllll lIlllllII Illllllll IIIIIIIIl lllllllll lllllllll Illllllll lllllllll llllllll
. R 4 8 10 12
a, deg
(b) M = 0.4.

Figure 17.- Continued.




80 =
60
4 £
== )
20 = [6)) /E’\
Cn. + Cne — T
Nq d.Nﬂ' E— b_’g E]
per radian —
o E ) T—
— i
-2 = Tail Cone
— © On
= o of
5.0: &)
Cng KON E v
per radian —
;llllllll Illllllll llIIIJJl llelllJ lllllllll lllllllll lllIlHlI lllllllll lllllllll IIHIHII
0
-6 -4 -2 0 2 4 6 8 10 12 14
a, deg
(¢) M = 0.5.

Figure 17.- Concluded.




0E
-2F
Cnr-cnécosa, =
per radian -
-AF G é’* Q—8-
= —O——0
v s 4 4 4 |
S - W
~8F TipFins  Struts
== o off off
_1.05 [} On On
E B
;_ ) "\m\m\E
e d e |
= =
1E
CnBcos a+ kZCnF, =
per radian ==
0 F
-1 ;llll“ll lllllllll lllllllll lllllllll llllll“l lllllllll lllllllll lllllllll Illllllll llllJl
-6 -4 -2 0 2 4 6 8 10 12 14

a, deg
(a) M =0.2.

Figure 18.- Effect of tip fins and struts on damping-in-yaw parameter and on
oscillatory directional-stability parameter of basic T47. Unfaired struts.
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Figure 19.- Effect of orbiter and orbiter incidence on damping-in-yaw parameter
and on oscillatory directional-stability parameter of modified T47. Unfaired
struts; tail cone on.
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Figure 20.- Effect of spoiler deployment on damping-in-yaw parameter and
oscillatory directional-stability parameter of ALT configuration.
i, = 6°; unfaired struts; tail cone on.
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Figure 21.- Effect of tail cone on damping-in-yaw parameter and on oscillatory
directional-stability parameter of ALT configuration. iy = 69; unfaired
struts.
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Figure 22.- Effect of tip fins and struts on rolling moment due to yaw-rate
parameter and on effective dihedral parameter of basic TU7. Unfaired
struts.
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Figure 23.- Effect of orbiter and orbiter incidence on rolling moment due to
yaw-rate parameter and on effective dihedral parameter of modified TH4T.
Unfaired struts; tail cone on.
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parameter and on effective dihedral parameter of ALT configuration.
io = 69; unfaired struts; tail cone on.
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Figure 28.- Effect of spoiler deployment on damping-in-roll parameter and on
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96




Clp + Clé sina,
per radian

(55)1,2 (55)3,4 (8¢)s 6 '

0° 0° 0°
0° 45° 20°

o
& II”IIIII lIIIIlIH Illllllll IIII]HII IIIIIIIII HIT]HH Hll]llll

Crg sina - kZClﬁ,
per radian

]

- ggoriiiiiiil v b bbb i oo b d el
*T6 -4 -2 0 2 4 6 8 10 12 14

”l'llll HI]IIIII

a, deg
(b) M= 0.4.

Figure 28.- Continued.

97




Clp + Clﬁ sina,
per radian

'CLB sina - kzcl[)'
per radian

98

-.08

=
= (6)12 (6sd3a (bs)s,6
E_ o 0° Qe 0°
= o e a5° 200
=
IllIllll lllllllll lllllllll l|l|I|||| ||||lllll lll_llllll lllllllll Hlllllll IHIIHH HHIlIII
6 4 -2 0 2 4 6 8 10 14
a, deg
(e) M = 0.5.

Figure 28.- Concluded.




Clp + Clé sin a,
per radian

Cgg sina - kZClﬁ,
per radian

-.08

&

P

Tai

o)
o

O

| Cone

On
off

ll||l||l Illllllll IIIIIIIII IIII|IIII ITTTIIIII Illl]llll IIII]IIII llll]llll IIII‘IIII IIIIIIIII

IEERERENI

lllllllll

lllllllll

Illllllll

lllllllll

lllllllll

lIlIIllll

Jllllllll

lIllIlllI ILlllllll

-4

-2

2

a,

M=20.2.

4 6

deg

8

10

12 14

Figure 29.- Effect of tail cone on damping-in-roll parameter and on rolling

moment due to roll-displacement parameter of ALT configuration.
unfaired struts.

ig = 69;

99




Clp + clé sina,
per radian

o
Tlllll lllllhllll llll]|lll IHIIIHI HII[IIII |||llll|l IIH]HH |l|llllll I”llllll

-3 Tail Cone
) = On
= Off
.04
C sinu-kzc.
B LK
per radian
-.04
.08 IIIIIIII lllIIIIIl lllllllll IIIIIllll Illllllll Illllllll IIl-lIHIl Ilillllll lllllllll llHIIIH
-6 -4 -2 0 2 4 6 8 10 12 14
a, deg

(b) M = 0.4,

Figure 29.- Continued.
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basic 747. Unfaired struts.
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Figure 30.- Continued.
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Figure 31.- Effect of orbiter and orbiter incidence on yawing moment due to
roll-rate parameter and on yawing moment due to roll-displacement param-
eter of modified 747. Unfaired struts; tail cone on.

105



Cn +Cpysina,
np nB
per radian

1
Cng sina - kzcnb,

per radian

106

Figure 31.- Continued.
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Figure 31.- Concluded.
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Figure 32.- Effect of spoiler deployment on yawing moment dqe to roll-rate
parameter and on yawing moment due to roll-displacement parameter of

ALT configuration.
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io = 69; unfaired struts; tail cone on.
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Figure 32.- Continued.
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Figure 32.- Concluded.
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Figure 33.- Effect of tail cone on yawing moment due to roll-rate parameter
and on yawing moment due to roll-displacement parameter of ALT configu-
ration. *i, = 69; unfaired struts.
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Figure 33.- Continued.
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Figure 33.- Concluded.
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